E == Limit[(1/n + 1)^n, n -> Infinity] ==
Limit[Sum[(1/n)^i*Binomial[n, i], {i, 0, n}], n -> Infinity] ==
Limit[Sum[(n!*(1/n)^i)/(i!*(n - i)!), {i, 0, n}], n -> Infinity] ==
Limit[Sum[Product[(n - j)/n, {j, 0, i}]/i!, {i, 0, n}], n -> Infinity] ==
Limit[Sum[Product[1 - j/n, {j, 0, i}]/i!, {i, 0, n}], n -> Infinity] ==
Limit[Sum[1/i!, {i, 0, n}], n -> Infinity] ==
Sum[1/i!, {i, 0, Infinity}]
Limit[Sum[(1/n)^i*Binomial[n, i], {i, 0, n}], n -> Infinity] ==
Limit[Sum[(n!*(1/n)^i)/(i!*(n - i)!), {i, 0, n}], n -> Infinity] ==
Limit[Sum[Product[(n - j)/n, {j, 0, i}]/i!, {i, 0, n}], n -> Infinity] ==
Limit[Sum[Product[1 - j/n, {j, 0, i}]/i!, {i, 0, n}], n -> Infinity] ==
Limit[Sum[1/i!, {i, 0, n}], n -> Infinity] ==
Sum[1/i!, {i, 0, Infinity}]