0 < x < Pi/2
Sin[x] < x < Tan[x]
Csc[x] > 1/x > Cot[x]
1 > Sin[x]/x > Cos[x]
Limit[Cos[x], x -> 0 ] == 1
Limit[Sin[x]/x, x -> 0] == 1
Sin[x] < x < Tan[x]
Csc[x] > 1/x > Cot[x]
1 > Sin[x]/x > Cos[x]
Limit[Cos[x], x -> 0 ] == 1
Limit[Sin[x]/x, x -> 0] == 1